domingo, 29 de marzo de 2020

El ADN algunas técnicas para su determinación


Repaso teórico
¿Qué es el ADN Y qué el ARN?



Refresquemos algunas diferencias




Trabajo Práctico Nº 10

Tema: tecnología del ADN

FUNDAMENTO
El ADN recombinante, o ADN recombinado, es una molécula de ADN artificial formada de manera deliberada in vitro por la unión de secuencias de ADN provenientes de dos organismos distintos que normalmente no se encuentran juntos. Al introducirse este ADN recombinante en un organismo, se produce una modificación genética que permite la adición de una nueva secuencia de ADN al organismo, conllevando a la modificación de rasgos existentes o la expresión de nuevos rasgos. La producción de una proteínano presente en un organismo determinado y producidas a partir de ADN recombinante, se llaman proteínas recombinantes.
El ADN recombinante es resultado del uso de diversas técnicas que los biólogos moleculares utilizan para manipular las moléculas de ADN y difiere de la recombinación genética que ocurre sin intervención dentro de la célula. El proceso consiste en tomar una molécula de ADN de un organismo, sea virusplanta o una bacteria y en el laboratorio manipularla y ponerla de nuevo dentro de otro organismo. Esto se puede hacer para estudiar la expresión de un gen, para producir proteínas en el tratamiento de una enfermedad genéticavacunas o con fines económicos y científicos.
El proceso de producción de un ADN recombinante comienza con la identificación desde un organismo de una secuencia de ADN de interés con el fin de propagarlo en otro organismo que carece de la secuencia y, por ende, del producto proteico de esa secuencia de ADN. Así se pueden producir cantidades ilimitadas de la proteína codificada por el susodicho gen. En términos simples, el procedimiento consiste en:
·         Localización de genes y sus funciones.
·         Clonación del ADN, y su posterior almacenamiento en genes.
·         Reacción en cadena de la polimerasa (PCR)
·         Utilización de vectores de expresión.

Una técnica utilizada para amplificar, o hacer muchas copias de, una región de ADN blanco en específico. Puntos más importantes:

·         La reacción en cadena de la polimerasa, o PCR, es una técnica para hacer muchas copias de una determinada región de ADN in vitro (en un tubo de ensayo en lugar de un organismo).
·         La PCR depende de una ADN polimerasa termoestable, la Taq polimerasa, y requiere de cebadores de ADN diseñados específicamente para la región de ADN de interés.
·         En la PCR, la reacción se somete repetidamente a un ciclo de cambios de temperatura que permiten la producción de muchas copias de la región blanco.
·         La PCR tiene muchas aplicaciones en la investigación y en la práctica. Se utiliza de forma rutinaria en la clonación de ADN, el diagnóstico médico y el análisis forense de ADN.

¿Qué es la PCR?
La reacción en cadena de la polimerasa (PCR) es una técnica de laboratorio común utilizada para hacer muchas copias (¡millones o miles de millones!) de una región particular de ADN. Esta región de ADN puede ser cualquier cosa que le interese al experimentador. Por ejemplo, podría ser un gen cuya función quiere entender un investigador o un marcador genético usado por científicos forenses para relacionar el ADN de la escena del crimen con los sospechosos.
Por lo general, el objetivo de la PCR es producir suficiente ADN de la región blanco para que pueda analizarse o usarse de alguna otra manera. Por ejemplo, el ADN amplificado por PCR se puede secuenciar, visualizar por electroforesis en gel o clonar en un plásmido para otros experimentos.

La PCR se utiliza en muchas áreas de la biología y la medicina, como la investigación en biología molecular, el diagnóstico médico e incluso algunas ramas de la ecología.

 

La Taq polimerasa

Al igual que la replicación de ADN en un organismo, la PCR requiere de una enzima ADN polimerasa que produzca nuevas cadenas de ADN mediante el uso de las cadenas existentes como molde. La ADN polimerasa que normalmente se utiliza en la PCR se llama Taq polimerasa, por la bacteria tolerante al calor de la que se aisló (Thermus aquaticus).

T. aquaticus vive en aguas termales y fuentes hidrotermales. Su ADN polimerasa es muy termoestable y su mayor actividad se presenta cerca de los 70°C (temperatura a la que la ADN polimerasa de ser humano o de E. coli no funcionaría). La Taq polimerasa es ideal para la PCR gracias a esta estabilidad térmica. Como veremos, la PCR utiliza altas temperaturas repetidamente para desnaturalizar el molde de ADN o separar sus cadenas.

Cebadores para PCR

Al igual que otras ADN polimerasas, la Taq polimerasa solo puede hacer ADN si hay un cebador, una corta secuencia de nucleótidos que proporciona un punto de partida para la síntesis de ADN. En una reacción de PCR, la región de ADN que será copiada, o amplificada, se determina por los cebadores que el o la investigadora elija.
Los cebadores para PCR son pedazos cortos de ADN de cadena sencilla, generalmente de unos 202020 nucleótidos de longitud. En cada reacción de PCR se utilizan dos cebadores que están diseñados para flanquear la región blanco (la región que debe ser copiada). Es decir, les agregan secuencias que harán que se unan a cadenas opuestas del molde de ADN solo en los extremos de la región a copiar. Los cebadores se unen al molde mediante complementariedad de bases.

Los pasos de la PCR

Los ingredientes clave para una reacción de PCR son Taq polimerasa, cebadores, ADN molde y nucleótidos (los bloques básicos del ADN). Los ingredientes se colocan en un tubo, junto con los cofactores que necesite la enzima, y se someten a ciclos repetidos de calentamiento y enfriamiento que permiten la síntesis del ADN.

Los pasos básicos son:
1.     Desnaturalización (96°C): la reacción se calienta bastante para separar, o desnaturalizar, las cadenas de ADN. Esto proporciona los moldes de cadena sencilla para el siguiente paso.
2.     Templado (555555 - 656565°C): la reacción se enfría para que los cebadores puedan unirse a sus secuencias complementarias en el molde de ADN de cadena sencilla.
3.     Extensión (72°C): la temperatura de la reacción se eleva para que la Taqpolimerasa extienda los cebadores y sintetice así nuevas cadenas de ADN.

Este ciclo se repite 252525 - 353535 veces en una reacción de PCR típica, que generalmente tarda 222 - 444 horas, según la longitud de la región de ADN que se copia. Si la reacción es eficiente (funciona bien), puede producir miles de millones de copias a partir de una o unas cuantas copias de la región blanco.
Eso es porque no solo se usa el ADN original como molde en cada ciclo. En realidad, el nuevo ADN que se produce en una ronda puede servir como molde en la siguiente ronda de síntesis de ADN. Hay muchas copias de los cebadores y muchas moléculas de Taq polimerasa flotando en la reacción, por lo que el número de moléculas de ADN casi puede duplicarse en cada ciclo. La siguiente imagen muestra este patrón de crecimiento exponencial.

Uso de la electroforesis en gel para visualizar los resultados de una PCR

Habitualmente, los resultados de una reacción de PCR se visualizan (se hacen visibles) al usar electroforesis en gel. La electroforesis en gel es una técnica en la que una corriente eléctrica impulsa fragmentos de ADN a través de una matriz de gel y los fragmentos de ADN se separan según su tamaño. Típicamente se incluye un estándar, o marcador de peso molecular, para que pueda determinarse el tamaño de los fragmentos en la muestra de PCR.
Los fragmentos de ADN de la misma longitud forman una "banda" en el gel que se puede identificar a simple vista si el gel se tiñe con un pigmento que se una al ADN. Por ejemplo, una reacción de PCR que produce un fragmento de 400400400 pares de bases (pb) se vería así en un gel:

Carril izquierdo: marcador de ADN con bandas de 100, 200, 300, 400 y 500 pb.
Carril derecho: resultado de la reacción de PCR, una banda de 400 pb.
Una banda de ADN contiene muchas, muchas copias de la región blanco de ADN, no solo una o unas cuantas copias. Dado que el ADN es microscópico, deben existir muchas copias de este para poder verlo a simple vista. Esto es una parte importante de por qué la PCR es una herramienta importante: produce suficientes copias de una secuencia de ADN para poder ver o manipular esa región de ADN.

Aplicaciones de la PCR

Mediante el uso de la PCR, una secuencia de ADN se puede amplificar millones o miles de millones de veces y producirá suficientes copias de ADN para que se analicen mediante otras técnicas. Por ejemplo, el ADN se puede visualizar por electroforesis en gel, enviar a secuenciar o digerir con enzimas de restricción y clonar en un plásmido.
La PCR se utiliza en muchos laboratorios de investigación, y también tiene aplicaciones prácticas en medicina forense, pruebas genéticas y diagnósticas. Por ejemplo, la PCR se utiliza para amplificar genes asociados con trastornos genéticos a partir del ADN de los pacientes (o de ADN fetal, en el caso de pruebas prenatales). La PCR también puede utilizarse para detectar el ADN de una bacteria o un virus en el cuerpo de un paciente: si el patógeno está presente, es posible amplificar regiones de su ADN de una muestra de sangre o tejido.

Problema de ejemplo: la PCR en ciencias forenses

Imagina que trabajas en un laboratorio forense. Acabas de recibir una muestra de ADN de un cabello encontrado en la escena de un crimen junto con muestras de ADN de tres posibles sospechosos. Tu trabajo es examinar un marcador genético determinado y ver si alguno de los tres sospechosos coincide con el ADN del cabello para este marcador.
El marcador se presenta en dos alelos o versiones. Uno contiene una secuencia repetida una vez (región marrón en la siguiente imagen) y el otro contiene la secuencia repetida dos veces. En una reacción de PCR con cebadores que flanquean la región con las secuencias repetidas, el primer alelo produce un fragmento de ADN de 200200200 \text{pb}pbp, b y el segundo produce un fragmento de 300300300 \text{pb}pbp, b:

Alelo marcador 1: los cebadores que flanquean la región de secuencias repetidas amplifican un fragmento de 200 pb de ADN.
Alelo marcador 2: los cebadores flanquean la región de repetidas amplifican un fragmento de 300 pb de ADN
Realizas PCR para las cuatro muestras de ADN y visualizas los resultados por electroforesis en gel, como se muestra a continuación:
El gel tiene cinco carriles:
Primer carril: marcador de ADN con bandas de 100, 200, 300, 400 y 500 pb.
Segundo carril: ADN de la escena del crimen, banda de 200 pb.
Tercer carril: ADN del sospechoso #1, banda de 300 pb.
Cuarto carril: ADN del sospechoso #2, bandas de 200 y 300 pb.
Quinto carril: ADN del sospechoso #3, banda de 200 pb.
¿Cuál es el sospechoso cuyo ADN coincide con el de la escena del crimen para este marcador?

Más sobre PCR y análisis forense

En pruebas forenses reales de ADN para una escena del crimen, los técnicos harían un análisis conceptualmente similar al del ejemplo anterior. Sin embargo, se compararía un número de diversos marcadores (no solo un marcador como en el ejemplo) entre el ADN de la escena del crimen y el ADN de los sospechosos.
Además, los marcadores utilizados en un análisis forense típico no tienen solo dos formas diferentes. Por el contrario, son altamente polimórficos (poli = muchos, morfo = forma). Es decir, se presentan en muchos alelos que varían en pequeños incrementos de longitud.
El tipo de marcador más usado en el análisis forense, llamado repeticiones cortas en tándem (STR, por sus siglas en inglés), consiste en muchas copias repetidas de la misma secuencia corta de nucleótidos (de 222 a 555 nucleótidos de largo, por lo general).

Al examinar múltiples marcadores, cada uno de los cuales presenta muchas formas alélicas, los científicos forenses pueden construir una "huella dactilar" genética única a partir de una muestra de ADN. En un análisis típico de STR que utiliza 131313 marcadores, la probabilidad de un falso positivo (que dos personas tengan la misma "huella dactilar" de ADN) ¡es menor a 111 en 101010.

Aunque se pueda pensar que las pruebas de ADN se usan para condenar a los criminales, también han jugado un papel crucial en exonerar personas falsamente acusadas (incluso algunas que tenían muchos años encarceladas). El análisis forense también se usa para determinar paternidad y para identificar restos humanos en escenas de desastre.
El vector que se utiliza contiene secuencias de ADN que al ser replicadas confieren resistencia a antibióticos específicos. Esta técnica ha sido ampliamente utilizada en el campo de la medicina y ha permitido el desarrollo de importantes avances terapéuticos como por ejemplo la producción de insulina recombinante.2
Permite además la posibilidad de utilizar plantas y alimentos transgénicos, así como microorganismos modificados genéticamente para producir fármacos u otros productos de utilidad para el hombre, entre los que se pueden citar: la insulina humana, la hormona del crecimientointerferones, la obtención de nuevas vacunas o la clonación de animales.
Con el uso de ADN recombinante se ha logrado obtener plantas transgénicas resistentes a insectoshongosbacterias y herbicidas, con mejores características de calidad durante poscosecha y con alto contenido nutricional.4 También ha permitido la clonación, expresión y producción mediante esta técnica de diversos antígenos, por ejemplo, la vacuna contra la hepatitis B5 y la vacuna contra el virus del papiloma humano.6

Producción y terapia con proteínas recombinantes

Las proteínas recombinantes son aquellas que se producen mediante la técnica del ADN recombinante, es decir, expresando un gen de un organismo en otro organismo distinto. Para que estas proteínas sean útiles desde el punto de vista terapéutico tienen que conservar su actividad. Además, se debe evitar que sean inmunogénicas para el ser humano. Para ello es importante decidir para cada proteína recombinante cual es el organismo de expresión más adecuado.

Producción en bacterias

Estas proteínas recombinantes han intentado expresarse en bacterias como E. coli, ya que son fáciles de mantener, crecen rápido y se conoce bien su genoma. Sin embargo, el mayor problema que presenta la producción en bacterias es que en ellas no existe glicosilación proteica, por lo que algunas proteínas producidas en bacterias pierden totalmente su función. Aun así se han logrado producir con éxito algunas proteínas recombinantes en bacterias. La primera proteína recombinante que se produjo en E. coli fue la somatostatina, una hormona anti-crecimiento de 14 aminoácidos. Sin embargo, aunque desde el punto de vista científico fue un éxito, desde el punto de vista económico fue un fracaso, ya que su utilidad estaba reducida a personas con problemas de gigantismo y similares, que son poco comunes. Posteriormente se logró un gran éxito en este campo mediante la producción de insulina en bacterias. La insulina presenta la ventaja de no necesitar modificaciones postraduccionales, por lo que se evita este problema de su producción en bacterias. Además, la diabetes es una enfermedad muy frecuente en la sociedad, con unos 347 millones de diabéticos. En EEUU el 6% de la población (20 millones de habitantes) son diabéticos y esta enfermedad es la 6ª causa de muerte. Antes de esta producción en bacterias, se usaba insulina porcina.

Producción en levaduras

Al ser células eucariotas y por lo tanto más similares a las humanas que las bacterias y ser muy fáciles de emplear industrialmente, las levaduras constituyen otro grupo de organismos susceptibles de producir proteínas recombinantes para uso humano. Sin embargo, aunque sí presentan glicosilación proteica, al contrario que las bacterias, esta es totalmente distinta a la humana, por lo que estas proteínas presentan problemas, en muchos casos incluso inmunogénicos.

Producción en células de insecto

Más cercanas aún a las células humanas que las levaduras son las de insecto, como las de Spodoptera frugiperda (una polilla parásito del maíz y del algodón), que se cultivan fácilmente in Vitro, aunque el medio de cultivo es caro. Dicho medio, además, no contiene suero, lo que hace más fácil el procesado de la proteína. Otra de las propuestas ha sido el uso no de células de insecto, sino de los insectos completos para la producción de estas proteínas. Para ello se infectan a los insectos con baculovirus modificados (que además no infectan a los seres humanos) para que expresen la proteína recombinante. Sin embargo, este sistema presenta exactamente el mismo problema que el de levaduras: que las células de insecto presentan glicosilación, pero esta es totalmente distinta a la de mamíferos.

Producción en células de mamífero

Al ser células más parecidas a las humanas, el procesamiento que sufren las proteínas recombinantes producidas en células de mamífero también es más similar, por lo que se conserva su función (aunque puede haber ligeros cambios en el patrón de glicosilación). Los inconvenientes de este método es que el crecimiento celular es más lento, tardando de 6 a 24 horas en duplicarse las células, que los cultivos pueden sufrir contaminación de bacterias u hongos y que se puede contaminar el producto con virus que infecten a humanos. Para la producción en mamíferos se usan las células CHO, de ovario de ratón chino, que presentan la ventaja de que crecen bien y existen gran cantidad de mutantes de glicosilación. Además, se está intentando que los animales secreten estas proteínas en la orina, en la leche, etc.



Observaciones : no se han podido pegar imágenes explicativas
 que se podrán observar en el apunte de aula. La profe

jueves, 26 de marzo de 2020

asistencia al blog

¿Tienen dudas? ¿Por dónde van? Espero la respuesta de cada uno....
Y así les tomo asistencia al blog:

miércoles, 18 de marzo de 2020

Muestreo Teoría

Según Gonzalez Pérez...
Fuente: http://ocw.usal.es/eduCommons/ciencias-experimentales/quimica-analitica/contenidos/CONTENIDOS/1.CONCEPTOS_TEORICOS.pdf

1. Muestreo
A pesar de la gran diversidad de objetos susceptibles de análisis, se utiliza una terminología común. Así, la parte del objeto empleada para llevar a cabo el análisis se denomina muestra* , y los compuestos o elementos de interés son los analitos. Éstos, suelen estar en presencia de una matriz, la cual no es directamente objeto de estudio, pero puede influir sobre las propiedades analíticas de los analitos. Esta influencia se designa como efecto matriz, y para obtener resultados fiables, deben compararse los obtenidos con los de una muestra en blanco. Desde el momento en que se plantea el problema de caracterizar una muestra (cualitativa o cuantitativamente) hasta que se consigue resolverlo es necesario llevar a cabo un proceso que, mediante el concurso de distintas técnicas operativas, permita poner de manifiesto las propiedades observables, medirlas e interpretarlas. El proceso que es necesario seguir consta de una serie de etapas que pueden resumirse en:

Toma de muestra para el análisis.
 Transformación del componente o especie química a analizar, hasta conseguir que alguna de sus propiedades tenga la categoría de analítica, esto es, pueda ser observada.
 Efectuar la medida de la propiedad escogida.
 Interpretación y cálculo de los resultados obtenidos.

Si bien es necesario indicar que en algunos casos no es necesario llevar a cabo alguna de las etapas, simplificándose, a veces sustancialmente, el problema. En cualquier caso, es fundamental definir claramente lo que hay que analizar y lo que puede analizarse. Para ello, es necesario plantearse algunas preguntas tales como:
  ¿necesito conocer la composición elemental de la muestra, la composición molecular, o detectar la presencia de ciertos grupos funcionales?
  ¿es necesario un análisis cualitativo o cuantitativo?
en caso de análisis cuantitativo, ¿qué precisión se requiere?
 ¿se trata de un componente mayoritario, o a nivel de trazas?
 ¿de cuanto material dispongo para realizar el análisis?
 ¿puede utilizarse un método destructivo, o debe conservarse la muestra?
 ¿cuál es la composición de la matriz?
 el resultado del análisis, ¿debe conocerse inmediatamente, o puede retrasarse durante algún tiempo?
 ¿se trata de un análisis aislado, es necesario repetirlo al cabo de algún tiempo, o incluso debe monitorizarse el sistema para obtener datos continuamente?
 ¿qué trascendencia tienen los datos analíticos obtenidos? Cuestiones como las planteadas previamente deben ayudar a seleccionar de forma adecuada el tipo de método analítico a utilizar. Esto se consigue buscando en la bibliografía especializada o incluso desarrollando algún procedimiento original.

Toma de muestra La muestra tomada debe ser representativa del material a analizar, en el sentido de que una porción del material en estudio contenga todos los componentes en sus mismas proporciones. Si el objeto a analizar es homogéneo, no hay problema alguno, ya que cualquier porción del mismo será representativo del conjunto. Sin embargo, desgraciadamente, la heterogeneidad existe siempre, en mayor o menor grado. Además, la heterogeneidad puede ser espacial (montaña de un mineral), temporal (cambios con el tiempo), espacial-temporal (agua de un río: distintas zonas, distinta época del año) etc. En estos casos, la porción de material a analizar que se utiliza a tales efectos se conoce como muestra media, y es con la que se opera, si bien, en algunos casos particulares puede requerirse un análisis por zonas.

Es obvio la extraordinaria importancia que tiene el obtener una muestra representativa de la composición global media del material, pues si esta premisa no se cumple, los resultados obtenidos no podrán aplicarse al conjunto del material del que se ha tomado.

El muestreo es un problema de tipo estadístico y puede no ser una labor muy simple si se tiene en cuenta que en ocasiones unas pocas décimas de gramo pueden representar toneladas del material original. Por otra parte, el problema del muestreo es tan amplio que no existe una teoría general sobre el mismo. Por ello, aquí se considerarán solo algunas situaciones que suelen presentarse con relativa frecuencia.

Muestreo de gases y líquidos. Los gases son, en general, homogéneos y pueden recogerse muestras en matraces evacuados o por desplazamiento del aire inicialmente presente en el matraz. Un líquido constituido por una sola fase es homogéneo si se ha agitado convenientemente. En un líquido en reposo pueden tomarse muestras a diferentes profundidades, y cuando se trate de una corriente de líquido, las muestras deben tomarse a intervalos de tiempo iguales.

Muestreo de sólidos. Cuando se trata de muestras sólidas constituidas por un gran número de trocitos, como por ejemplo, un cargamento de carbón o un mineral de aluminio, es necesario tomar una muestra bruta, mayor que la que puede someterse análisis en el laboratorio y reducir luego sistemáticamente el tamaño de partícula y la masa total para obtener finalmente la muestra analítica final. Para tomar la muestra bruta es necesario seleccionar un gran número de porciones de distintas partes del cargamento y luego reunirlas todas. En el caso de un producto almacenado en sacos, se tomarán porciones de varios sacos, convenientemente elegidos, y dentro de cada saco, a distintas profundidades. La cantidad de muestra que debe tomarse depende del grado de división, del contenido de impurezas y de la naturaleza del producto a analizar. Por ejemplo, si los fragmentos son de 2 a 3 cm, la muestra bruta deberá ser del orden de 250 Kg, mientras que si los fragmentos son del orden de 1 mm, serán suficientes unos 30 gramos. Por otra parte, el peso de muestra a tomar será tanto mayor cuanto mayor sea el contenido de impurezas.

Si se trata de un mineral en movimiento, durante la carga o descarga de vagonetas, o cuando pasa a través de una cinta transportadora, es relativamente fácil tomar muestras representativas; todo consiste en tomar pequeñas porciones a intervalos regulares. La conversión de la muestra bruta en la muestra de tamaño menor (muestra de laboratorio) requiere reducir el tamaño de partícula y a la vez la masa. Para ello, existen varios procedimientos, todos los cuales tienden a reducir al máximo los errores sistemáticos en cada paso y a minimizar los errores de azar.

Para los distintos análisis individuales se toman pequeñas porciones (alícuotas) de la muestra de laboratorio. En muchos casos la muestra tomada no se somete enseguida al análisis, previa pulverización y tamizado, sino que se almacena durante algún tiempo. Para ello, la muestra se pone en un recipiente limpio, bien seco, se cierra cuidadosamente (o se sella) y se etiqueta, indicando en ésta la fecha y circunstancias del muestreo. Asimismo, es necesario tener en cuenta que todos los sólidos tienden a tomar humedad de la atmósfera, por lo que deben secarse en condiciones determinadas y referir los resultados a muestra seca. De todas formas, aún cuando los resultados se vayan a informar en base a "muestra seca", puede ser útil pesar muestras secadas al aire y determinar la humedad en muestra aparte.


Pesada de la muestra La pesada de la muestra para llevar a cabo el análisis se realiza normalmente por alguno de los dos métodos siguientes: Pesada por diferencia. En este método se pone en un pesa-sustancias una cantidad de muestra suficiente para poder tomar varias porciones y se obtiene el peso total en una balanza analítica. A continuación se saca el pesa-sustancias de la balanza y, con el máximo cuidado para evitar que la sustancia se derrame, se retira la cantidad de muestra que se considere conveniente para realizar el análisis, volviendo a pesar el pesa-sustancias con la sustancia remanente. Ambas pesadas se anotan inmediatamente en el cuaderno de laboratorio y la diferencia da el peso de sustancia tomada. Si se saca demasiada muestra del pesa-sustancias, no está permitido volver parte de la misma a él; en este caso debe lavarse el recipiente y hacer otro intento. Pesada por adición. En este método se obtiene primero el peso del recipiente vacío y seco al cual se va a transferir la muestra y luego se añade la sustancia poco a poco hasta que se tenga el peso requerido. Una vez pesada la sustancia es necesario transferirla cuantitativamente al recipiente en el que va a disolverse. Es evidente que las sustancias que son higroscópicas, eflorescentes o volátiles no pueden pesarse exactamente por este método de adición.


2.Toma de muestra para microbiología
Fuente: https://inta.gob.ar/sites/default/files/033_procedi_12_0.pdf


Consigna: trabaja en tu casa estas fuentes, realiza un apunte donde resumas los conceptos más importantes, añádelo en tu carpeta de clases.



Muestreo vídeos

Video 1

vídeo 2


Realiza un informe de cada uno de los vídeo Observados.

Aviso

  Para los Alumnos de 6°, en la asignatura Lab. de Química Orgánica y Biológica, que adeudan la entrega de trabajos prácticos, se les inform...